Classical integrability of the O(N) nonlinear Sigma model on a half-line

نویسندگان

  • E. Corrigan
  • Z-M Sheng
چکیده

The classical integrability the O(N) nonlinear sigma model on a half-line is examined, and the existence of an infinity of conserved charges in involution is established for the free boundary condition. For the case N = 3 other possible boundary conditions are considered briefly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Integrability of Certain Boundary Conditions 1

We study the quantum integrability of the O(N) Nonlinear σ (nlσ) model and the O(N) Gross-Neveu (GN) model on the half-line. We show that the nlσ model is integrable with Neumann, Dirichlet and a mixed boundary condition and that the GN model is integrable if ψ a + | x=0 = ±ψ a − | x=0. We also comment on the boundary condition found by Corrigan and Sheng for the O(3) nlσ model. 1 Work done und...

متن کامل

Classically integrable boundary conditions for symmetric-space sigma models

We investigate boundary conditions for the nonlinear sigma model on the compact symmetric space G/H. The Poisson brackets and the classical local conserved charges necessary for integrability are preserved by boundary conditions which correspond to involutions which commute with the involution definingH. Applied to SO(3)/SO(2), the nonlinear sigma model on S2, these yield the great circles as b...

متن کامل

Reduced Sigma-Model on O(N): Hamiltonian Analysis and Poisson Bracket of Lax Connection

This short note is devoted to the study of the Hamiltonian formalism and the integrability of the bosonic model introduced in [hep-th/0612079]. We calculate Poisson bracket of spatial components of Lax connection and we argue that its structure implies classical integrability of the theory.

متن کامل

Algebra of Non-local Charges in the O(n) Wznw Model at and beyond Criticality

We derive the classical algebra of the non-local conserved charges in the O(N) WZNW model and analyze its dependence on the coupling constant of the Wess-Zumino term. As in the non-linear sigma model, we find cubic deformations of the O(N) affine algebra. The surprising result is that the cubic algebra of the WZNW non-local charges does not obey the Jacobi identity, thus opposing our expectatio...

متن کامل

On the geometry of classically integrable two-dimensional non-linear sigma models

A master equation expressing the classical integrability of two-dimensional non-linear sigma models is found. The geometrical properties of this equation are outlined. In particular, a closer connection between integrability and T-duality transformations is emphasised. Finally, a whole new class of integrable non-linear sigma models is found and all their corresponding Lax pairs depend on a spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996